SPn :第n次采样时刻的给定值
PVn :第n次采样时刻的过程变量值 从式(2-1)中,SP和PV都是已知量,因此影响输出值OUT在比例项中只有回路增益Kc。不难看出比例项值的大小与回路增益大小成比例系数关系。根据 P控制规律,在比例项中我们只要合理的设定Kc的大小,就能因根据采样偏差e值的变化规律改变MPn,从而影响Mn来控制调节幅度。 3.2积分项(MIn): 积分项值MI与偏差和成正比。因为偏差(e)是给定值(SP)与过程变量值(PV)之差(en=SPn-PVn)。根据(1-5)与(1-6)式中对应关系可得CPU执行的求积分项算式为:
MIn=Kc* (SPn-PVn)+MX (2-2)
式中:
MIn :第n次采样时刻积分项的值
Kc :PID回路增益
T :采样周期(或控制周期)
TI :积分时间常数
SPn :第n次采样时刻的给定值
PVn :第n次采样时刻的过程变量值
MX :第n-1采样时刻的积分项(积分前项)
在CPU每次计算出MIn之后,都要用MIn值去更新MX,MX的初值通常在第一次计算输出以前被设置为为Minitial(初值),这也就是Minitial为什么会在(1-5)式未执行扫描到(1-6)式执行扫描后变为MX的原因。 从式(2-2)中我们可以看出,积分项包括给定值SP、过程变量值PV、增益Kc、控制周期T、积分时间常数TI、积分前项MX 。而SP、PV、Kc(已在比例项中设定)、T(根据设备性能参照确定)、MX(上一次积分已算出)都是已知量,因此影响输出值OUT在积分项中只有积分时间常数TI。不难看出积分项值的大小与位于积分算式分母位置的积分时间常数TI大小成反比系数关系。也就是说,在有积分项参与输出调节控制的时候,积分时间常数设置越大,积分项作用输出值就越小,反之增大。根据I控制规律,在积分项中我们只要合理的设定TI的大小,就能因根据采样偏差e值的变化规律改变 MIn,从而影响Mn来控制调节幅度。 在这里又涉及到采样周期选取的问题,采样周期是计算机重新扫描各现场参数值变化的时间间隔,控制周期是重新计算输出的时间间隔,在不考虑计算机CPU运算速度的情况下,采样周期与控制周期通常认为是同一描述。在实际工业过程控制中,采样、控制周期越短,调节控制的品质就越好。但盲目、无止境追求较短的采样周期,不仅使计算机的硬件开支(如:A/D、D/A的转换速度与CPU的运算速度)增加,而且由于现行的执行机构(如:电动类调节阀)的响应速度较低,过短的采样周期并不能有效的提高系统的动态特性,因此我们必须从技术和经济两方面综合考虑采样频率的选取。 选取采样周期时,有下面几个因素可供读者参考: 1、 采样周期应远小于对象的扰动周期。
2、 采样周期应比对象的时间常数小得多,否则所采样得到的值无法反映瞬间变化的过程值。
3、 考虑执行机构的响应速度。如果采用的执行器的响应速度较慢,那么盲目的要求过短的采样周期将失去意义。
4、 对象所要求的调节品质。在计算机速度允许的情况下,采样周期短,调节品质好。
5、 性能价格比。从控制性能来考虑,希望采样周期短。但计算机运算速度,以及A/D和D/A的转换速度要相应地提高,会导致计算机的费用增加。
6、 计算机所承担的工作量。如果控制的回路较多,计算量又特别大,则采样要加长;反之,可以将采样周期缩短。 综上分析可知:采样周期受很多因素的影响,当然也包括一些相互矛盾的,必须根据实际情况和主要的要求作出较为折衷的选择。笔者在实际过程控制中得出以下经验(仅供读者参考):如:流量1~2S,压力2~3S,温度1.5~4S,液位5~8S等。 3.2 微分项(MDn): 微分项值MD与偏差的变化成正比。因为偏差(e)是给定值(SP)与过程变量值(PV)之差(en=SPn-PVn)。根据(1-5)与(1-6)式中对应关系可得CPU执行的求微分项算式为: MDn= KC* *{( SPn-PVn)-(SPn-1-PVn-1)} (2-3)
为了避免给定值变化引起微分项作用的跳变,通常在定义微分项算式时,采用假定给定值不变,即:SPn =SPn-1。这样可以用过程变量的变化替代偏差的变化,计算算式可改进为:
MDn= KC* * (PVn-PVn-1) (2-4)
(2-3)与(2-4)式中:
MDn :第n次采样时刻微分项的值
Kc :PID回路增益
T :采样周期(或控制周期)
TD :积分时间常数
SPn :第n次采样时刻的给定值
PVn :第n次采样时刻的过程变量值
SPn-1 :第n-1次采样时刻的给定值
PVn-1 :第n-1次采样时刻的过程变量值 式(2-4)中参与控制的变量或常量有增益Kc、微分时间常数TD、控制周期T、第n次采样时刻的过程变量值PVn、第n-1次采样时刻的过程变量值 PVn-1。而PVn、PVn-1、Kc(已在比例项中设定)、T(根据设备性能参照确定)都是已知量,因此影响输出值OUT在微分项中只有微分时间常数 TD。在式中不难看出,1、为了计算第n次的微分项值,必须保存第n-1次过程变量值参与下一次计算,
|