金牌会员
- 积分
- 1353
- 威望
- 669
- 贡献
- 440
- 兑换币
- 223
- 注册时间
- 2012-2-9
- 在线时间
- 122 小时
- 毕业学校
- 成都信息工程学院
|
本帖最后由 x舞z 于 2012-12-7 13:52 编辑
<前段时间,以为同学给我说,他用单片机做了一个简单的LED台灯,用PWM的方式控灯的亮度,但是发现BJT总是很烫。他的电路图如图1所示。我问他:3V时LED的发光电流多大,他说十几道二十毫安左右。我问他电阻多大。他说10K。于是我笑笑的说:“你把电阻改小一点就好了”。于是他回去一试,用了1k的电阻,就没有问题了。>
但是为什么要这么做?
一、BJT和MOSFET的开关特性讨论 在电子设计与制作中,双极性晶体管(BJT)和MOSFET 是用的最多的有源器件。 考虑到多数的情况(分立元件)下。这两种器件在现代电子电路中用作开关器件,而恰好相反的是,我们大多数的教科书却着重于介绍这两种器件的放大性能。所以在这我主要讨论一下这两种器件的开关特性和应用。
大多数人的应该有这么一个概念:BJT为电流控制器件,MOSFET为电压控制器件。至于为什么这么说。通过以下的介绍,你可能会有很清晰的认识。首先我们讨论MOS管的开关的相关理论和基本应用。
关于MOSFET的讨论
下面讨论MOSFET.很多初学者对于这种器件是相当陌生的。先为大家介绍我遇到的一个案例。曾经有个同学刚刚接触机器人。他试图用MOSFET驱动机器人上的电机。当时他给我是这样的描述。不管单片机输入的是PWM波还是高电平信号,电机转速都很慢,并且MOSFET很烫,最终烧坏。当我们看到图5时,我立刻明白,出现上述问题是因为他对功率MOSFET基本上没有概念,在他看来,似乎和BJT的使用方法一样。
为了了解MOSFET,我们很有必要先掌握一些理论知识。这里讨论增强型的MOSFET。并以N沟道器件为例。对于分立增强型的MOSFET,衬底一般和源极接到到一起,且栅极和衬底为氧化层,实际上是一层绝缘体。所以,栅极之间的电阻非常大,静态时,几乎所有电流流入栅极。这一点应该是大多数人都知道的。
如图6所示,给MOSFET的漏源之间加上正偏电压,当栅源电压Ui 增强到一定值(即阈值电压Vth)时,开始有电流Id流入漏极。随着Ui的继续增加,Id增大,RL 上承受的电压也随之增大。当UI 足够大时,RL上承受几乎所有的电源电压。Id 也达到一定的值而不再增加。此时MOSFET进入线性区,漏源之间有一个较小的压降。但需要注意的是,这个压价和BJT饱和压降不同,这个压降不是一个固定值,而是漏源之间的电流Id呈正相关(几乎是线性)关系。这个电压可以这样计算:VDD(on) = Id * Ron。 其中,Ron 为导通电阻,使我们在MOSFET的数据手册中常见的一个参数。它表征着MOSFET的套筒损耗。
从上面的分析可以得知。MOSFET作为开关时,我们只要在栅源之间加一个足够大的电压,MOSFET就能充分导通。此时,MOSFET上的压降为漏源电流与导通电阻之间的乘积。不同功率的MOSFET,要求的栅源电压不同。对于常见的TO220,TO252封装的MOSFET,通常取值是10-15V,对于SOP8,和SOT23等封装的低压MOSFET,这个值可以取得低一点。一般的数据手册会给出导通电阻随栅源电压的变化曲线。
我们可以从数据手册中不难看书,在VGS较小时,Ron并不是一个常数,而是随着Id 的增加而增大。原因就在于我们前边提到的,讨论导通电阻Ron时,应当使得MOSFET充分导通。漏源电流越大,使得MOSFET充分导通将会变得越困难。因为要求的栅源电压越高。所以,当栅源电压不是足够大时,MOSFET并没有充分导通,MOSFET并没有进入线性区,所以导通电阻也就会同时依赖于漏源电压。
那大家又会问,如图5所示的电路,把MOSFET改为低阈值的器件是不是就没有问题了呢? 这也不一定,因为至此,我们还没有涉及MOSFET驱动电压应该怎么加的问题。
前面我们说的栅源之间的电阻大道几乎是绝缘体的电阻。那么栅源电阻Rg的取值很大或者很小应该都没有问题。而事实上,当对开关速度没有要求是,确实是这样的。对于一般的MOSFET,Rg的取值从几欧姆到上兆欧姆都是可以正常开启的。。图5案例如果不需要PWM调速或者PWM频率很低时,把IRF540换成低阈值的MOSFET的话,或许正常工作时没有问题的。
但是我们应该都清楚。MOSFET的栅极和漏极之间都是介质层。因此栅源和栅漏之间必然存在一个寄生电容Cgs和Cgd,沟道未形成时,漏源之间也有一个寄生电容Cds,所有考虑到寄生电容时,MOSFET的等效电路就成了图9 的样子了。但是我们从MOSFET的数据手册中一看看不到这3个参数,手册给出的参数一般是Ciss Coss 和Crss 他们与Cgs和Cgd,Cds的关系如下:Ciss = Cgs + Cgd(Cds短路时).
Coss = Cds + Cgd
Crss = Cgd
下面看一下这些寄生电容参数是如何影响开关速度的。 如图10 所示,当驱动信号Ui 到来的一瞬间,由于MOSFET处于关断状态。此时Cgs 和Cgd 上的电压分别为Ugs = 0, Ugd = -Vdd , Cgs 和 Cgd 上的电荷量分别为 VTgs = 0 , Vgd = Ugd*Cgd= Vdd * Cgd . 接下来。 Ui 通过 Rg 对 Cgs 充电。 Ugs 逐渐升高(这个过程中,随着Ugs 升高,也会伴随着Cgd 的放电,但是由于Vdd 远大于Ugs , Cgd 不会导致栅电流的明显增加)
当Ugs 达到阈值电压时,开始有电流通过MOSFET(事实上,当Ugs 还没有达到 阈值电压的时候,已经有微小电流通过MOSFET了),MOSFET上承受的压降由原来的Vdd 开始减小,Cgd 上的电压也会随之减小。那么也就伴随着Cgd 的放电。由于Cgd 的电荷量VTgd = Vdd * Cgd 较大,所以放电的时间较长。在放电时间期间,栅极电流基本上用于Cgd 的放电。,因此栅源电压的增加变得缓慢。
充电完成后,Ui通过Rg 继续对Cgs和Cgd 充电(因为此时MOSFET已经充分导通,相当于Cgs 和Cgd并联),直到栅源电压达到Ui,开启过程至此完成。
同时,不难发现,当Rg越大,寄生电容的充电时间越长。显然,Rg 太大时,MOSFET不能在短时间内充分导通。在高速开关应用中,这个阻值一般去几欧姆 至 几十 欧姆(像 D类功放,开关电源),即使在低速状态下,Rg 也不宜取得太大。因为过大的Rg,会延长电容的充电时间,也就是MOSFET 从关断到充分导通的过度时间。这段时间内,MOSFET处于饱和状态(放大区),管子将同时承受较大的电压和电流,从而引起较大的功耗。但是Rg 如果取得太小或者直接短路的话,在驱动电压到来得一瞬间,由于寄生电容上的电压为0,前级需要流过一个很大的电流,造成对前级驱动电路的冲击。
补充内容 (2012-12-7 19:21):
部分内容在后面。由于分次输入。所以不在一个,界面,给大家带来不便,还请谅解。 |
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有帐号?注册
x
|